3d Finite Element Modeling of Fiber-Matrix Instabilities in Compression
نویسندگان
چکیده
منابع مشابه
Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملFinite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کامل3D Finite Element Modeling of High Speed Machining
This paper presents simulation of High Speed Machining of steel with coated carbide tools. More specifically, Third Wave Systems AdvantEdge commercial Finite Element Method code is employed in order to present turning models, under various machining conditions. As a novelty, the proposed models for High Speed Machining of steel are three-dimensional and are able to provide predictions on cuttin...
متن کاملTime-Domain Finite Element Modeling of 3D Integrated Optical Devices
Introduction As integrated optical devices become more sophisticated, so does the experimentation and analysis required to design them. By augmenting conventional experiments with rigorous computer modeling we can lower costs, shorten schedules, and provide faster, more accurate predictions. Discrete modeling codes using finite differences or finite elements are the most general, albeit expensi...
متن کاملEfficient 3D Finite Element Modeling of a Muscle-Activated Tongue
We describe our investigation of a fast 3D finite element method (FEM) for biomedical simulation of a muscle-activated human tongue. Our method uses a linear stiffness-warping scheme to achieve simulation speeds which are within a factor 10 of real-time rates at the expense of a small loss in accuracy. Muscle activations are produced by an arrangement of forces acting along selected edges of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Fracture
سال: 2003
ISSN: 0376-9429
DOI: 10.1023/b:frac.0000005804.83692.a2